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1 Introduction

Scientific applications are usually written in a single language such as C, C++, or a flavor of Fortran. Various
algorithmic differentiation (AD) tools exist to differentiate these applications by using source transformation [1, 2, 3, 4]
or operator-overloading [5, 6]. The language that an application is written in often dictates the approach and tool
to be used for differentiation. Additionally, performance considerations, tool philosophy (recomputation vs. storage),
and specific tool capabilities such as support for sparse Jacobians or fixed-point iterations may play a role in the tool
that is ultimately used to differentiate an application.

Operator overloading and source transformation have their own strengths and weaknesses. The most important
feature of operator-overloading-based AD tools is that they can be used in software regardless of its design complexity.
Many large simulation tools (e.g., ISSM [7], SU2 [8, 9]) have been successfully differentiated in this manner. One
drawback, however, is the large amount of memory required to store the tool-specific internal representation of the
computation in order to run it in the reverse mode. The execution speed also suffers because of low compiler opti-
mization potential. Both problems do not occur in source transformation tools. However, such tools cannot handle
runtime features of C++ such as object inheritance, polymorphism, and templating.

Some scientific applications are coded in C++ but contain portions that are in C or are C like. Often, the global
structure of the application is complex and requires the use of advanced C++ features, but the computationally
intensive portions are C functions. In our previous work [10] we successfully demonstrated the interfacing of an
application differentiated mainly by using operator overloading with a library that has been differentiated using
source transformation. The implementation relies on the externally differentiated function feature of ADOL-C, where
such functions have actually been differentiated by using ADIC. The interface works also well with Tapenade. We
demonstrated that this mixed approach is able to amortize the memory requirement for the calculation of adjoints
and Jacobians on two applications. By using both approaches in the same application wherever they are applicable
and well suited, we were able to use the strengths of both approaches.

In this work we demonstrate the inverse interface. Here, the global application structure is a straightforward pure
C (or Fortran) implementation; however, certain library calls may internally use complicated C++ features. We have
created an entirely new interface keeping in mind the features of both ADOL-C and ADIC to support this setup.

2 Interfacing

When the C++ library is differentiated by using ADOL-C, an ADOL-C–specific internal representation of the compu-
tation, called a trace, will be generated. The interpretation of such a trace with the drivers provided in the ADOL-C
library results in the computation of the derivatives for this function. To interface a C++ library function with an ex-
ternal application that is differentiated by ADIC, we annotate the C++ function in the library and use a preprocessor
to generate the helper codes listed below.

• ADIC stub containing the same activity patterns as the C++ function
• Interfacing function that replaces the differentiated-stub
• Trace creation source and header

The ADIC stub is used in the outer code to allow ADIC to have access to a complete code base. By keeping the
activity patterns consistent, ADIC creates an appropriate differentiated stub. However, this differentiated stub must
be replaced in ADIC’s output code with an interfacing function that contains calls to appropriate ADOL-C drivers.

Additionally, the trace creation source/header files are used to create the trace for the C++ function before
computing the derivatives. This process occurs when the interfacing function is executed for the first time. This is
true even if the outer code contains multiple calls to the C++ function, since ADOL-C traces are reusable at different
evaluation points. An exception to this rule is when an ADOL-C branch switch warning occurs that requires setting
up the trace again at an appropriate evaluation point.
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As is the norm in differentiating a library with ADOL-C, the source code of the C++ function must be manually
instrumented for using operator overloading with ADOL-C. The ADIC-generated files and preprocessor-generated files
are compiled and appropriately linked to the ADOL-C differentiated library. In this setup, the interfacing function
copies primal data from ADIC’s buffers, as well as pointers to tangent or adjoint data from ADIC’s buffers, and passes
them to the ADOL-C driver function for the appropriate mode of differentiation. The primal data is then copied back
into ADIC’s variables. The output adjoint/tangent data is implicitly written into ADIC’s buffers because of the use
of pointers.

The workflow for the C++ library developer involves instrumentating the library as usual for differentiation by
ADOL-C. Additionally the developer must write annotations for each API function and run the preprocessor to
generate files for each of them. The developer of the C application must use the stub function to the differentiate
application using ADIC. The differentiated stub must then be discarded. The build process for the application must
be modified to additionally compile and link the preprocessor-generated files.

3 Annotations and Preprocessing

The annotation used in the C++ library is itself a description of the arguments of the C++ function, in that it specifies
the active input and output variables, as well as the inactive indices, sizes, counters, and so forth. The input and
output variables can be scalars, vectors, matrices, or slices of vectors or matrices, or even lower, or upper triangular
matrices, or slices thereof. The annotation describes the dimensions associated with each variable name as well as its
position in the formal argument list. This annotation is written by using Python syntax inside a specialized C++
comment. It is therefore ignored by a C/C++ compiler, and the Python-based preprocessor does not bother with the
actual C/C++ code. One such annotation for a simple case can be seen in Fig. 1

/*@ stad_export interface
name = ’k_eval’
iarr = [ (’n’, 2), (’m’, 4), (’j’, 6) ]
input = [ (’y’, [ ’iArr[0]’ ], 1), (’u’, [ ’iArr[1]’ ], 3) ]
output =[ (’k’, [ ’s’, ’iArr[2]’, ’iArr[2]+1’, ’0’, ’iArr[0]’ ], 5 )

]
@*/

void k_eval(double *y, int n, double *u, int m, double **k,
int j)

Figure 1: Annotations describing input and output variables with their dimensions

Writing the annotation is intuitive for anyone familiar with the semantics of the API function being annotated.
The annotation is written as a list of tuples for each of input, output, and integer data (iArr). The tuple consists of
the formal argument name, its dimension if it is an active input or output, and its position in the formal parameter
list. For inactive integers the dimension is not required because they are all scalars. The numbers in the list of inactive
integers may be referenced to provide the dimensions of the input or output variables by indexing them starting at
0. For example, in Fig. 1 iArr[0] is a reference to the parameter named n mentioned as the first element of the iarr

list. Dimensions may also be given in terms of global variables or expressions. The dimension itself is a list of length
up to 6. Length 0 implies scalars, length 1 vectors, and length 2 matrices. Additionally, one may specify slices of
vectors and matrices by putting the character “s” as the first element of the dimension list, followed by the first index
and past-end-of-slice index for each dimension respectively. Upper or lower triangular matrices may be specified by
putting the character “u” or “l” at the end of the dimension list.

In order to generate C code for the interfacing function described in the preceding section, as well as the code
to set up the trace properly and a stub to be processed by ADIC, the annotation is extracted and processed by a
Python-based preprocessing script. Processing the information about the formal argument names, their dimensions,
and the position in the parameter list allows one to use a generic loop structure to copy required data from one data
structure to another and call either the ADOL-C–instrumented API function or the driver functions of ADOL-C in an
application-agnostic way. The preprocessor relies mainly on regular expressions and string concatenation in Python.
Only the portion between /*@ and @*/ is parsed in Python. The skeleton of the interface code generated from the
annotation in Fig. 1 is shown in Fig. 2.

4 Validation

We have tested the mixed approach on a simple scalable test case of moderate code size modeling a periodic adsorption
process used in an optimal control setting. This code is used to compute the derivatives required by the optimization
algorithm, namely, gradients and Jacobians.

The periodic adsorption process was studied from an optimization point of view in [11, 12]. A system of PDAEs
in time and space with periodic boundary conditions models the cyclic steady state of a process, where a fluid is
preferentially absorbed on the surface of a sorbent bed. This leads to dense Jacobians that dominate the computation
time (see [11]). Therefore, previous works have used inexact Jacobians (for example, [12]). Using AD, however, we



void ad_k_eval(DERIV_TYPE *y, int n, DERIV_TYPE *u, int m, DERIV_TYPE **k, int j){
static char firsttime = 1;
if (firsttime) {

setup_tape_k_eval(y, n, u, m, k, j);
firsttime = 0;

}
int iArr[3];
double *invec, *outvec;
if (our_rev_mode.adjoint ==TRUE)

//Pop iArr
} else {

iArr[0] = n; iArr[1] = m; iArr[2] = j;
}
invec = (double *) malloc((((iArr[0])-(0))+ ((iArr[1])-(0))) * sizeof(double));
outvec = (double *) malloc(((((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0)))) * sizeof(double));
//Store DERIV val(y, u) in invec
if (our_rev_mode.plain==TRUE){

zos_forward(1,(((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0))),((iArr[0])-(0))+ ((iArr[1])-(0)),0,invec,outvec);
//Store outvec DERIV val(k)

} else if (our_rev_mode.tape == TRUE) {
//Push invec
//Push iArr

zos_forward(1,(((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0))),((iArr[0])-(0))+ ((iArr[1])-(0)),0,invec,outvec);
//Store outvec DERIV val(k)

} else if (our_rev_mode.adjoint ==TRUE) {
//Pop invec
double **inbar, **outbar;
inbar = (double **) malloc((((iArr[0])-(0))+ ((iArr[1])-(0))) * sizeof(double*));
outbar = (double **) malloc(((((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0)))) * sizeof(double*));
//Point inbar to DERIV grad(y) and DERIV grad(u)
//Point outbar to DERIV grad(k)

zos_forward(1,(((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0))),((iArr[0])-(0))+ ((iArr[1])-(0)),1,invec,outvec);
set_nested_ctx(1,1);
fov_reverse(1,(((iArr[2]+1)-(iArr[2]))*((iArr[0])-(0))),((iArr[0])-(0))+ ((iArr[1])-(0)),__ADIC_GradSize(),outbar,inbar);
set_nested_ctx(1,0);
free(inbar);
free(outbar);

}
free(invec);
free(outvec);

}

Figure 2: Interfacing function with ADIC data and ADOL-C drivers

compute the equality and inequality constraint Jacobians as well as the objective gradient exactly up to machine
precision. The PDAE system is discretized in space by using a finite-volume approach, and the resulting system of
ODEs is then integrated in time by using a Runge-Kutta method.

The code of the original application was written completely in C. This application has been separately differentiated
by using both ADIC and ADOL-C in the past. Therefore, to test the approach, we arbitrarily divided the call graph
of the application into two portions: one to be differentiated by ADIC and one to be differentiated by ADOL-C. We
added annotations to the ADOL-C portion and used the preprocessor to generate the interfacing function, stub, and
tape creation header and source. We then used ADIC to generate derivative code and modified the ADOL-C portion
by transforming all the double variables to adoubles. We then modified the build process of the original application
and generated an executable. The resulting values for the objective gradient and the equality and inequality constraint
Jacobians matched the values computed by a purely ADOL-C application.

5 Conclusion and Future Work

We have developed a method to interface a Fortran or C application differentiated by source transformation AD with
a C++ library differentiated by operator overloading using ADOL-C. The method requires the use of hand written
annotations to automatically generate additional files. We have shown that the method works on a medium sized
application. In the future, we would like to study the approach on a large scale application differentiated by ADIC
or Tapenade that must be interfaced with a large library differentiated by ADOL-C. We would also like to study the
exploitation of structure such as sparsity within the combined application in such a framework.
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